

# Microfluidic Design of Biodegradable Nanomaterials with Tuneable Morphology and Dimensions

| Contact               | Prof. Kawthar BOUCHEMAL<br>IRCP, Chimie ParisTech, 11 rue Pierre et Marie Curie 75231 Paris |
|-----------------------|---------------------------------------------------------------------------------------------|
|                       | Dr. Josh McGraw<br>Gulliver, IPGG, 6 Rue Jean Calvin, 75005 Parıs                           |
| Internship level      | Master 2                                                                                    |
| Starting and duration | Six months starting in January 2024                                                         |
| Keywords              | Microfluidics; Self-assembly; Nanoprecipitation; Nanomedicines                              |

## Context

Since the 1970s, polymeric nanomaterials (NM) have emerged as promising systems with numerous advantages over conventional formulations.<sup>1,2</sup> They have shown ground-breaking achievements in improving drug efficacy/toxicity ratio, controlled drug release, and targeted drug biodistribution by efficiently bypassing biological barriers.<sup>3</sup> Among the criteria defining synthetic identity, NM morphology has been considered during the last decade as a novel parameter that plays a pivotal role in controlling biological processes.<sup>4,5</sup> Nonspherical NM have been generated using different fabrication techniques divided into bottom-up and top-down approaches. However, most of those techniques are batch processes that have several drawbacks: (i) they result in large particles (typically >150 nm), (ii) high polydispersity, and (iii) high batch-to-batch variation. Those drawbacks are sub-optimal for biological applications. To address current challenges in NM formulation, microfluidic technologies have been used to prepare NMs with controlled physicochemical properties<sup>6</sup> and good reproducibility.

### **Internship Description**

The project aims to design biodegradable NM with controlled morphology and dimensions. NM are composed of biodegradable poly(lactic acid) stereocomplexes.<sup>7</sup> Those materials provide unique properties, such as the control of the molecular architecture. NM composed of poly(lactic acid) stereocomplexes will be designed in a microfluidic device. The impact of process parameters on NM morphology and dimensions will be investigated. Once prepared, NM dimensions, concentration, morphology, volume, surface-specific areas, mechanical properties, and surface potential will be assessed. Investigating NM behaviors toward cells could be studied depending on the internship progression and the candidate's motivation.

### **Candidate profile**

Applicants should have a PharmD or a bachelor's degree in polymer chemistry, physical chemistry, colloids, or formulation. The motivation in microfluidic process engineering could be an added value.

#### How to apply?

Applicants will send a motivation letter and a CV comprising the names of two references to <u>kawthar.bouchemal@chimieparistech.psl.eu</u> and <u>joshua.mcgraw@espci.fr</u>

#### References

- 1 Huang, X. et al. Nature Medicine **28**, 2273-2287 (2022).
- 2 Thapa, R. K. & Kim, J. O. Journal of Pharmaceutical Investigation 53, 19-33 (2023).
- Weiga, N. et al. Journal of Controlled Release **355**, 446-457 (2023).
- Hadji, H. & Bouchemal, K. *Journal of Controlled Release* 342, 93-110 (2022).
  Zhu, X., et al. Materials Horizons 6, 1094-1121 (2019).
- Shepherd, S. J., et al. Biomaterials 274, 120826 (2021).
- Marin, P. et al. Angewandte Chemie International Edition 58, 12585-12589 (2019).